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Abstract: Design of optimal controllers for uncertain linear systems subject to communication constraints 
is investigated in this paper. By following the Model-Based Event-Triggered (MB-ET) control framework 
we are able to design optimal control laws using the nominal models that are robust to model uncertainties 
and limited communication. For finite horizon optimal control problems we also provide sub-optimal 
schedulers that estimate the best time instants to send feedback measurements. The nominal optimal 
controller and sub-optimal scheduler aim at optimizing the performance of the system that considers the 
control effort as well as the cost of communication both in the presence of model uncertainties. 

 
1. INTRODUCTION 

The problems of control and estimation under communication 
constraints have received increased attention in recent years 
motivated by the extensive use of digital communication 
networks with limited bandwidth. The communication 
channel is shared by different applications and in many 
instances only a reduced number of nodes are able to send 
information through the network within some specified time 
interval. This is typical in Networked Control Systems 
(NCS), where the communication channel may not be 
available for a given system to communicate at every instant 
(Moyne and Tilbury [2007]). Also, constraints due to the 
limited communication and processing capabilities at every 
node or agent within the network may reduce frequency of 
transmissions (Tolic and Fierro [2011]). In other applications, 
it may be desirable not to use the communication channel, 
even if it is available, due to energy constraints (Araujo 
[2011], Bernardini and Bemporad [2008]). It becomes 
essential to determine the conditions under which a 
dynamical system will remain stable and achieve some 
desired performance in the presence of model uncertainties, 
disturbances, and limited feedback information. 

An approach for reducing the rate of necessary 
communication between a system’s sensor and controller 
nodes is the Model-Based Networked Control Systems (MB-
NCS) approach. In this framework we use an imperfect 
model of the physical system or plant to be controlled to 
generate a control input for the actuator allowing the system 
to run in open loop for a finite interval of time without need 
for feedback in this period. The state of the model is then 
updated when a measurement arrives from the sensor 
resetting any possible mismatch between plant and model 
states. It has been shown (Montestruque and Antsaklis 
[2003]) that using this framework it is possible to stabilize a 
system by sending periodic measurements to the controller, 
considerably reducing the number of information packets 
broadcasted through the network.  

Different authors have pursued a different, intuitive 
framework that reduces the rate of communication among 
agents. In event-triggered broadcasting (Tabuada and Wang 
[2006], Tabuada [2007], Wang and Lemmon [2008], [2011], 
Donkers and Heemels [2012]) a subsystem sends its local 
state to the network only when it is necessary, that is, when a 
measure of the local subsystem state error is above a 
specified threshold. These references use a Zero-Order-Hold 
(ZOH) to compute the control input between events, that is, 
the updates sent by the sensor node are kept constant at the 
controller node until new measurements arrive.     

The MB-NCS framework with periodic updates by 
Montestruque and Antsaklis [2003] was extended by Garcia 
and Antsaklis [2011], [2012], [2013] to consider event-based 
updates. A similar event-triggered approach using a model of 
the system was proposed by Lunze and Lehmann [2010]. A 
common characteristic shared by the control methodologies 
mentioned above is that, for given system and controller, they 
are able to reduce network communication for stability. In the 
present paper we will use the combined Model-Based Event-
Triggered (MB-ET) framework (Garcia and Antsaklis 
[2011]) to maximize the transmission intervals but also 
consider the control effort. In other words, we address the 
design of optimal control laws and optimal thresholds for 
communication in the presence of plant-model mismatch by 
appropriately weighting the system performance, the control 
effort, and the communication cost. The approach we follow 
is to optimize the performance of the nominal system, which 
can be unstable, and to ensure robust stability for a given 
class of model uncertainties and for lack of feedback for 
extended intervals of time.  

Similar ideas have been considered by different research 
groups. For instance, Imer and Basar, [2005], [2006] consider 
separately the estimation and control problems with limited 
information when the nominal system is affected by process 
and measurement noise. In both cases the source node is able 
to send data through the communication channel only M 



 
 

     

 

times of possible N (M<N). The aim is to find the optimal 
control law (minimize the average estimation error) by 
indirectly penalizing channel uses. Molin and Hirche [2009], 
[2013] also consider the trade-off between control 
performance and resource utilization, i.e. the cost of updating 
the controller node using current measurements. The authors 
study linear systems affected by zero-mean Gaussian noise 
and they assume that the system parameters and statistics are 
known, that is, structured model uncertainties are not taken 
into account in their work. The authors of (Ramesh 
et.al.[2011], Antunes [2013], Cogill, et.al.[2007], Xu and 
Hespanha [2004], MacKunis et.al. [2011], Zhang and Hristu-
Varsakelis [2005]) also address similar problems.  

The contributions of the paper are as follows. We 
provide a detailed analysis of the robustness of the discrete-
time Linear Quadratic Regulator (LQR) to parameter 
uncertainties and absence of feedback measurements for 
extended periods of time using the MB-ET approach. Similar 
results are briefly described for the continuous-time case. 
Then, we consider an approximate solution to the optimal 
control problem that jointly considers system performance, 
control effort, and communication costs, all of them in the 
presence of model uncertainties. The remainder of the paper 
is organized as follows. In Section 2 we state the discrete-
time optimal control problem with communication 
constraints and we also describe an approximation of the 
solution that considers two sub-problems. In Section 3 we 
analyze the robustness of one subproblem, the infinite 
horizon Linear Quadratic Regulator (LQR), to plant model 
uncertainties and limited feedback measurements. The main 
results are presented for discrete-time systems but similar 
results can be obtained for continuous-time systems as well. 
The design of nominal optimal control inputs and sub-
optimal events is considered in Section 4. Examples are 
offered in Section 5. Conclusions are drawn in Section 6. 

2. PROBLEM FORMULATION 

Consider an uncertain discrete-time linear plant of the form: 
( 1) ( ) ( )x k Ax k Bu k+ = + .                       (1) 

The available nominal model of the system is represented by: 
  ˆ ˆˆ ˆ( 1) ( ) ( )x k Ax k Bu k+ = +                        (2) 

where ˆ, nx x ∈ . Define the state error as:  
ˆ( ) ( ) ( )e k x k x k= − .                            (3) 

Note that the plant can be unstable. It is assumed that 
transmissions triggered by the occurrence of events do not 
suffer from delays or losses. The aim is to design an optimal 
controller for the nominal system (2) that is robust to model 
uncertainties and to limited feedback information. The latter 
means that feedback measurements are not always available 
for control. Therefore, it becomes essential to establish a 
trade-off between the performance of the control system and 
the information that can be transmitted. This trade-off can be 
defined by solving the next optimization problem: 
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where Q and NQ  are real, symmetric, and positive semi-
definite matrices, R is a real, symmetric, and positive definite 
matrix. ( ) {0,1}kβ ∈  is a binary decision variable that 
dictates the communication pattern in the system as follows: 

{1( ) 0
k

k

measurement x is sentk measurement x is not sentβ =

             
(5) 

and S is a positive weighting factor that penalizes network 
communication. In this paper we follow the Model-Based 
Event-Triggered (MB-ET) framework (Garcia and Antsaklis 
[2011], [2013]). This configuration makes use of an explicit 
model of the plant which is added to the controller node to 
compute the control input based on the state of the model 
rather than on the plant state, as represented in Fig. 1.  

The goal is to reduce the communication between nodes 
by reducing the rate at which feedback information is sent to 
the controller. The MB-ET framework has the advantage that 
it can provide ‘virtual feedback’ to control the physical 
system when no real measurements can be obtained at the 
controller node due to communication constraints. The 
combination of the nominal model at the controller and the 
event-triggering strategy provides a ‘virtual feedback’ by 
generating an estimate of the state that is kept close to the 
real state by maintaining a small state error. In order to obtain 
the same model state x̂  at the sensor node we implement a 
second identical model at the sensor node that is updated 
using the measurements ( )x k  only when ( ) 1kβ = . 

The idea of ‘virtual feedback’ allows for an approximate 
solution to (4) which considers the separation of problem (4) 
into two sub-problems. The first one requires the design of 
the optimal control for the nominal system for the case when 
feedback measurements are always available to compute the 
control input. Since we consider model uncertainties and 
communication constraints, the optimal controller needs to be 
robust to both model mismatch and lack of real feedback for 
intervals of time. Section 3 addresses this problem for the 
case of infinite horizon optimization problems.  

 
Fig. 1. Model-based event-triggered networked architecture 

The second sub-problem aims at minimizing the state 
error by also considering the cost that needs to be paid every 
time we decide to send a measurement to update the model 
and reset the state error. In Section 4 we use the 
corresponding solution for the first sub-problem for discrete-
time finite horizon optimization problems along with a 
Dynamic Programming algorithm that provides the optimal 
times to send updates.  



 
 

     

 

3.  ROBUST LINEAR-QUADRATIC REGULATOR 

The robustness of the continuous-time LQR to plant model 
uncertainties has been analyzed by different authors (Douglas 
and Athans [1994], Misra [1996], Lin and Olbrot [1996]). In 
the case of matched uncertainties the LQR guarantees robust 
stability for any bounded uncertainty of this type. In this 
section we extend the approach in Lin and Olbrot [1996] for 
matched uncertainties in order to consider state feedback 
uncertainties as well. The state uncertainty is characterized by 
the state error (3) and is the result of limited communication 
between sensor and controller. We also make use of the MB-
ET approach in order to design error events that enable 
transmission of measurements sensor to controller.  

In this section we consider the discrete-time system (1) 
with model (2) and the state error as defined in (3). We also 
consider the following assumptions:  

a)  The nominal system ˆ ˆ( , )A B  is stabilizable. 

b)  ˆB B=  
c) We assume matched uncertainty, that is, the 

uncertainty is in the range of the matrix B. Mathematically 
we have that there exists a m n×  matrix φ  such that 

ˆA A A Bφ= − = , and φ  is bounded in the Euclidean sense. 
In the absence of model uncertainties we use the nominal 

system parameters (2) to design a feedback control law 
u Kx=  that minimizes 

0
( ) ( ) ( ) ( ) ( ) ( )T T T

k
J x k Fx k x k Qx k u k Ru k

∞

=

= + +∑          (6) 

where  
[ ] .T TF B PB Rφ φ≥ +                             (7) 

Q is a real, symmetric, and positive semi-definite matrix, and 
R is a real, symmetric, and positive definite matrix. The 
solution of the optimal control problem that minimizes (6) is 
the discrete-time LQR which provides the feedback gain: 

 1 ˆ[ ]T TK B PB R B PA−= − +                      (8) 
and the matrix P is the solution of the associated discrete-
time ARE: 

1ˆ ˆ ˆ ˆ[ ] 0T T T TA PA P F Q A PB B PB R B PA−− + + − + = .     (9) 
Similarly, we can study the robustness of this solution in the 
presence of both, model uncertainties and absence of 
feedback at every time instant k, in order to find an event-
triggered strategy that provides stability using asynchronous 
update time intervals. 

Theorem 1. System (1) with a model-based input ˆu Kx=  
and with model updates based on error events is 
asymptotically stable for all matched uncertainties satisfying 
(7) if the updates are triggered when 

  e xα≥                                    (10) 

where 1 2min( , )α α α= , 1 1/ 2q cα σ= , 1/2
2 2[ / 2 ]q cα σ= , 0 1σ< < , 

( )q Qσ= , 1c = ˆ2 [ [ ]]TA B K PBKφ+ + , and 2
T Tc K B PBK= . 

K is the feedback gain given by (8)-(9).  

Proof.  By using the following relationship: 

1ˆ ˆ[ ]
ˆ ˆ [ ]

T T T

T T T T
A PB B PB R B PA

A PBK K B PA K B PB R K

−− + =
+ + +              (11) 

we can rewrite the discrete-time ARE (9) as: 
ˆ ˆ[ ] [ ] 0T TA BK P A BK F Q K RK P+ + + + + − = .      (12) 

Let us consider the candidate Lyapunov function 
( ) TV x x Px=  and we evaluate the first forward difference of 

V(x) along the trajectories of the real system using the model 
control input ˆu Kx=   

( ) ( ( 1)) ( ( ))
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x A BK A PBKe e K B PBK

φ φ φ φ

Δ = + −

= + + + + + + −

= + + + +
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x Qx x A BK A PBKe e K B PBKe

q x A B K PBK e x K B PBK e

q x c e x c e

φ

≤ − + + + +

≤ − + + + +

≤ − + +

 

Now, by updating the model (the error is set to zero when we 
update) following the condition in (10), we can bound the 
error using the term in the right hand side of (10) and we can 
finally write: 

2( ( 1)) ( ( )) [ 1] .V x k V x k q xσ+ − ≤ −            (13) 
Then V is guaranteed to decrease for any σ such 0 1σ< <  
when updating the state of the model using the threshold in 
Theorem 1. ♦  
Similar results can be obtained for continuous-time systems 
of the form:   

( ) ( ) ( )x t Ax t Bu t= +                           (14) 
using nominal models expressed by 

  ˆ ˆˆ ˆ( ) ( ) ( )x t Ax t Bu t= +                           (15) 
where ˆ, nx x ∈ . The state error is defined similar to (3) and 
we also assume a)-c) above. 

In the absence of model uncertainties, we use the 
nominal system parameters (15) to design a feedback control 
law u Kx=  that minimizes 

1
2

0

[ ( ) ( ) ( ) ( ) ( ) ( )]T T TJ x t Fx t x t Qx t u t Ru t dt
∞

= + +∫       (16) 

where  F is defined as  
.TF Rφ φ≥                                (17) 

Q is a real, symmetric, and positive semi-definite matrix, and 
R is a real, symmetric, and positive definite matrix. The 
solution of the optimal control problem that minimizes (16) is 
the LQR which provides the feedback gain:  

1 TK R B P−= −                               (18) 
and the matrix P is the solution of the associated Algebraic 
Riccati Equation (ARE) (Douglas and Athans [1994]): 

1ˆ ˆ 0T TA P PA PBR B P F Q−+ − + + = .            (19) 



 
 

     

 

The robustness of this solution in the presence of both, model 
uncertainties and absence of continuous feedback is shown 
next based on event-triggered control updates of the state of 
the model. 

Theorem 2. System (14) with a model-based input ˆu Kx=  
and with model updates based on error events is 
asymptotically stable for all matched uncertainties satisfying 
(17) if the updates are triggered when 

  
T

q

K RK
e x

σ
≥                                 (20) 

where ( )q Qσ= , 0 1/ 2σ< < , K is the feedback gain given 
by (18)-(19). 

4.  FINITE HORIZON OPTIMAL CONTROL AND 
OPTIMAL SCHEDULING 

Finite horizon optimal control problems are more realistic 
when considering real problems. The consideration of infinite 
horizon problems results, in many cases, in simplified 
controller design steps. This can be easily observed in the 
continuous and discrete-time LQR above. These simpler 
controllers can be used in practice, especially, for long or 
unknown finite horizons. For shorter horizons, we need to 
formulate the problem differently. 

In this section, assuming N is known, we consider our 
original problem as stated at the beginning of this paper. The 
discrete-time plant and model are given by (1) and (2) 
respectively and the cost to be minimized is similar to (4) 
which includes a penalty for network communication. 
Additionally we use separate weights F and Q to consider 
plant model uncertainties. The cost function is given by 

,
1

0

min ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ).
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J x N Q x N

x k Fx k x k Qx k u k Ru k S k
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−

=

=

+ + + +∑    
(21) 

By following similar ideas as in previous sections we first 
design the optimal controller for the plant model assuming 
that feedback measurements are always available. The 
optimal control input for this case is given by: 

 1 ˆ*( ) [ ( 1) ] ( 1) ( )T Tu N i B P i B R B P i Ax N i−− = − − + − −    (22) 
where P(i) is recursively computed using: 

ˆ ˆ( ) [ ( )] ( 1)[ ( )]
( ) ( )

T

T
P i A BK N i P i A BK N i

F Q K N i RK N i
= + − − + −
+ + + − −

.     (23) 

Define the Lyapunov function ( ( )) ( ) ( ) ( )TV x k x k P k x k= . 
Using a similar analysis as in Section 3 we can show the 
following results. 

Corollary 3. System (1) with input (22) is stable in the 
Lyapunov sense for all matched uncertainties satisfying: 

[ ( ) ]T TF B P k B Rφ φ≥ +                        (24) 
for all k=0,1,…N. ♦ 

Note that in order to obtain the optimal control law we 
need to solve offline the discrete-time LQR, i.e. we need to 
find K(k) and P(k) before the execution of the system. Then it 
is possible (knowing a bound on the uncertainty) to check 
(24) in advance. When (24) holds we know the system is 
stable and the optimal cost of the form (6) with no 

communication penalty is finite when measurements are 
available at every time k. Then we can proceed to select an 
appropriate weight on the communication to restrict 
measurement updates from the sensor to the controller. 

We are now in the position to approach the second 
problem that was introduced in the beginning of this paper in 
a more formal way. In Section 3 we were able to reduce the 
communication rate between sensor and controller while 
using the optimal control law and the estimates generated by 
the model. However, the communication pattern was not 
optimal. Next we use the error nominal dynamics and the 
selected communication factor S in order to design sub-
optimal update events. The difficulty in obtaining optimal 
control laws and optimal schedulers was highlighted by 
different authors Molin and Hirche [2009], [2013], Ramesh 
et.al. [2011], and Xu and Hespanha [2004]. The problem 
discussed in this paper is more challenging by considering 
plan-model mismatch. In the following we discuss an 
approximate solution to our problem. This approximation to 
solve the optimal scheduling problem can be seen as the 
minimization of the deviation of the system performance 
from the nominal closed-loop performance by considering the 
cost that needs to be paid because of the updating of the state 
of the model and the resetting of the state error. 

The error dynamics are given by: 
ˆ( 1) ( 1) ( 1)
ˆ ˆ( ) ( ) ( ) ( )
ˆ ( ) ( ).

e k x k x k
Ax k Bu k Ax k Bu k
Ae k Ax k

+ = + − +
= + − −
= −

            (25) 

Since the uncertainty A  is not known, we use the nominal 
error dynamics, i.e. 

ˆ( 1) ( )e k Ae k+ = .                               (26) 
Furthermore, when the sensor decides to send a measurement 
update, which makes ( ) 1kβ = , we reset the error to zero. 
Then the complete nominal error dynamics can be 
represented by the following equation: 

ˆ ˆ ˆ( 1) ( ) ( ) ( ) [1 ( )] ( )e k Ae k k Ae k k Ae kβ β+ = − = − .       (27) 
It is clear that, in the nominal case, when no model 
uncertainties exist, once we update the model the state error 
is equal to zero for the remaining time instants. However, in a 
real problem the state error dynamics are disturbed by the 
state of the real system which is propagated by means of the 
model uncertainties as expressed in (25). Then, using the 
available model dynamics we implement the nominal optimal 
control input and the sub-optimal scheduler that results from 
the following optimization problem: 

1

0

min ( ) ( ) ( ) ( ) ( )
N

T T
e N

k

J e N Q e N e k Qe k S k
β

β
−

=

= + +∑
 
  (28) 

ˆsubject to ( 1) [1 ( )] ( )
( ) {0,1}.

e k k Ae k
k

β
β

+ = −
∈

 

In order to solve problem (28) we use Dynamic Programming 
in the form of look up tables. The main reason for using 
Dynamic Programming is that, although the error will be 
finely quantized, the decision variable ( )kβ  only takes two 
possible values, which reduces the amount of computations 
performed by the Dynamic Programming algorithm. The 
sensor operations at time k are reduced to measure the real 



 
 

     

 

state, compute and quantize the state error and determine if 
the current measurement has to be transmitted by looking at 
the corresponding table entries which are computed offline. 
The table size depends only on the horizon N and the error 
quantization levels.  

5. EXAMPLE 

Example 1. Consider the nominal model of an unstable 
discrete-time second order system given by: 

1.5 0.3 1 0ˆ ,
0.6 0.7 0 1

A B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
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Fig. 2. Response of the real uncertain system with limited 
feedback (top). States of the model used to control the system 
(bottom) 
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Fig. 3. State error used to determine the instants at which a 
feedback measurement has to be transmitted (top). 
Communication pattern β(k)(bottom) 

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (k)

N
om

in
al

 s
ta

te
s

 

 
x1
x2

 
Fig. 4. Response of the nominal system receiving feedback 
measurements at every time k   

Let the unknown dynamics of the unstable real system used 
in the next simulation example be: 

1.25 0.48
0.73 0.81

A ⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 

The model-based controlled system is intended to 
operate over a finite period of N=30 stages. The parameters 
in the optimization problem are as follows: Q R I= = , 

1S = , 2NQ I= . The unknown initial conditions of the 
system are given by (0) [1.9 1.4]Tx = − . Since these initial 
conditions are unknown to the controller, the model is 
initialized using ˆ(0) [0 0]Tx = . The computation of the 
control gains at every time instant and the solution of the 
Dynamic Programming optimization problem are computed 
offline and stored accordingly in the controller and sensor 
nodes. The results of the simulation are shown in Fig. 2 - Fig. 
4 using linear interpolation to connect the consecutive values 
in the response of the system and model.  

Fig. 2 shows both the states of the real system and the 
states of the model that are used in the computation of the 
control input when feedback measurements are unavailable. 
The top portion of Fig. 3 shows the state error. For the 
different combinations of the state error we find the 
corresponding entry on the table that contains the solution of 
the Dynamic Programming optimization problem. At every 
time instant the sensor decides to send or not the 
measurement of the state of the system based on the values of 
the error, those decisions are represented at the bottom of Fig. 
3. An important difference with respect to the error threshold 
designed in Section 3 is that the solution of the problem in 
(28) considers the dynamics (nominal) of the error in the 
design of the transmission events. By including a prediction 
of the behavior of the state error we are also able to predict 
the consequences, as measured by the computation of the 
optimal cost, of updating or not the model at a given time 
instant k. We can see, for instance, that some combinations of 
state error values will result in different transmission 
decisions depending at which of the N stages we are 
operating at that moment. 

It is also important to note that in the absence of model 
uncertainties we obtain the response of the nominal system as 
if measurements were always available. Fig. 4 shows the 
response of the nominal system when feedback 
measurements are available at every time instant k. The 
behavior of the overall controlled system which consists on 
the MB-ET framework with optimal control input and 
optimal scheduler is comparable to that of the nominal 
system for which the optimal control law is designed, and the 
difference is considerably reduced as the uncertainties 
diminish.     

6. CONCLUSIONS 

The design of optimal controllers for unknown systems 
represents a challenging task. An approach that has been 
studied in the literature is to design an optimal controller for a 
nominal system and analyze its robustness to a range of 
uncertainties. In this paper we considered a more complex 
version of this problem in which feedback information is also 
limited. In addition to designing an optimal control input, we 



 
 

     

 

also addressed the problem of finding the optimal instants at 
which we should transmit feedback measurements. Our 
approach, which consists of model-based estimates of the 
state and of error events, provides a practical and promising 
methodology that considers the overall performance of the 
communication constrained system.  
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